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We study the joint distribution function for position and velocity of a Brownian 
particle near a wall. The wall absorbs all particles that hit it with sufficiently 
high velocity and reflects all slower ones, either specularly or diffusely. We 
determine in particular stationary distributions in the absence of external forces. 
Appreciable deviations from local equilibrium occur in a kinetic boundary layer 
near the wall; its details depend strongly on the way in which the slow particles 
are reflected. The resulting effective absorption rate is calculated and compared 
with the result of approximations analogous to the transition state theory of 
chemical reactions. The method used is a generalization of the one used in an 
earlier paper for the case of a completely absorbing wall; a numerical algorithm 
based on an expansion of the distribution function in terms of a presumably 
complete set of boundary layer solutions. 

KEY WORDS: Fokker-Planck equation; kinetic boundary layer; diffusion- 
controlled reactions; transition state theory; reaction rates; half-range 
expansion, 

1. INTRODUCTION AND SURVEY 

K i n e t i c  b o u n d a r y  layers  (1) a re  reg ions  n e a r  a wal l  in a f lu id  or, as in the  

case  s tud ied  here ,  in a su spens ion  of  B r o w n i a n  par t ic les ,  w h e r e  the  a s s u m p -  

t ion  of  a p p r o x i m a t e  loca l  e q u i l i b r i u m  b reaks  down .  Th is  impl i e s  tha t  the  

h y d r o d y n a m i c  e q u a t i o n s  ( N a v i e r - S t o k e s  o r  S m o l u c h o w s k i  e q u a t i o n s )  can -  

n o t  h o l d  all the  w a y  to the  b o u n d a r y .  T h e  C h a p m a n - E n s k o g  so lu t ions  of  

the  u n d e r l y i n g  k ine t i c  equa t i ons ,  f r o m  wh ich  the  h y d r o d y n a m i c  e q u a t i o n s  

are  de r ived ,  do  n o t  fulfi l l  the  m i c r o s c o p i c  b o u n d a r y  cond i t i ons ;  t hey  m u s t  

be  s u p p l e m e n t e d  by  ce r t a in  a d d i t i o n a l  b o u n d a r y  l aye r  so lu t ions .  E v e n  so, 
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one can fulfill the microscopic boundary conditions only with Chapman- 
Enskog solutions that obey certain additional restrictions; these can be 
written as boundary conditions for the hydrodynamic equations (in our 
case the Smoluchowski equations), when the latter are a s s u m e d  to hold all 
the way to the wall. In general these macroscopic boundary conditions 
contain certain constants (slip or accommodation coefficients), that depend 
in a complicated way on the microscopic boundary conditions. 

In a previous paper (2) we illustrated this state of affairs with a simple 
example, the Brownian motion of a particle in a half-space bounded by a 
completely absorbing plane wall. The dynamics of the probability distribu- 
tion for velocity and position of the Brownian particle is governed by a 
Fokker-Planck equation of Klein-Kramers type. O) This equation is often 
used to describe the flow of chemical reactants at low concentration for the 
case that the reacting particles are much heavier than the solvent mole- 
cules; 3 the coordinate perpendicular to the wall then corresponds to the 
"reaction coordinate." We further restricted ourselves to stationary solu- 
tions of this equation in the absence of external potentials. The Chapman- 
Enskog solutions (5) are determined completely by the probability density in 
position space; the latter must be of the form n ( x )  = a + b x .  Solutions of 
the full Fokker-Planck equation that approach this density profile asymp- 
totically and, moreover, obey the microscopic boundary condition at the 
wall are only possible for a particular value of x M = - a / b .  The so-called 
Milne extrapolation length x M is the accommodation coefficient for our 
problem. We shall argue later that its inverse is related to an effective 
absorption rate at the wall. The actual value of x M could only be deter- 
mined approximately via a numerical procedure. 

In the present paper we generalized these results to selectively absorb- 
ing walls. In Section 2 we adapt the formalism of Ref. 2 to treat this 
generalization. In Section 3 we give numerical results for a specific exam- 
ple, suggested by the reaction-dynamical interpretation of our model: a 
wall that absorbs all particles impinging on it with velocities larger than a 
certain threshold velocity and specularly reflects all slower particles. A 
pronounced feature of the solutions is an accumulation of slow particles 
near the wall for threshold velocities of the order of the thermal velocity or 
larger. Unfortunately, the convergence of our numerical procedure does not 
suffice to derive accurate predictions for the quantity x M (defined in the 
preceding paragraph) for threshold velocities larger than the thermal 
velocity. 

Better convergence is obtained for a modified scattering kernel for 
which the subthreshold particles are reemitted diffusely, i.e., with a velocity 

3 See Refs. 4 and 9. All of these contain many references to earlier work in the field. 
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distribution corresponding to the Maxwell distribution at the temperature 
of the solvent. This case is discussed in Section 4. For this case the structure 
of the boundary layer can be related simply to the case of a completely 
absorbing boundary, treated in Ref. 2. The resulting values of x i are 
compared with the predictions of "transition state theory", 4 both in a naive 
version, and in a modified, self-consistent form. The latter yields good 
predictions for all but the lowest threshold velocities. For the model of 
Section 3 larger deviations are indicated, but convergence problems pre- 
clude definitive statements. Section 5 contains a few concluding remarks. 

2. BASIC EQUATIONS AND SOLUTION PROCEDURE 

In this paper we are interested in stationary solutions of the one- 
dimensional Fokker-Planck equation 

Ot - Y mr - -  + ~ u  -u~-~-~ 2 (2.1) 

where P(u, x, t) is the probability distribution for the components u and x 
of velocity and position of the Brownian particle perpendicular to the wall, 
m is its mass, 7 the friction coefficient, and /? = (keT) -1 with T the 
temperature of the solvent medium. As is shown in Section 2 of Ref. 2, this 
equation has the stationary solutions of Chapman-Enskog type 

•o(U, x) = (mr)'/2exp( - �89 mflu 2) (2.2a) 

and 

+~)(u, x) = mfl3,(2er)- l / 2 ( x  - ~ / - l u ) e x p (  - �89 2) (2.2b) 

with corresponding position space densities no(x ) = (27r) 1/2 and n'o(X ) = x / l  
with l = (mfly2) - i/2 the velocity persistence length, (2'5) the analog for our 
problem of the mean free path in kinetic theory. In addition we have the 
boundary layer solutions (2'6) 

,+_n(u,x) = c,H,((�89 ) '/2[ u -T- 2(n/mB )1/2] } 

• e x p [ -  �89 S (u -T-(n/mfi)l/2}2-T- yx(nml~) 1/2] 

( n = l , 2  . . . .  ) (2.3) 

with c, a normalization constant. 

4 Strictly speaking, transition state theory is formulated for a particle in a bistable potential; it 
relates the reaction rate to the one-way flow at the top of the barrier for the equilibrium 
solution. We shall loosely apply the term to a similar approximation to be described more 
precisely in Section 4. 
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Our goal is to construct a solution of (2.1) for x > 0 that approaches 
the Chapman-Enskog solution +'o(U, x) + dot)o(U, x) for x ---> oe and obeys 
certain boundary conditions at x - 0. The solution sought must have the 
form 

e (u , x )  = q/o(U,X) + ~, d .~+.(u ,x)  (2.4) 
n=O 

since the +_ n diverge for large x. 
The boundary condition at x = 0 will be formulated in terms of a wall 

scattering kernel o(u I u'), where o(u I u')du is the probability that a particle 
impinging on the wall with velocity u ' <  0 will leave it with a velocity 
between u and u + du, with u > 0. In terms of this quantity we must have 

/2 uP(u,O) = [u'lo(u l u')P(u',O)du' for u > 0 (2.5a) 

This condition relates the positive- and negative-velocity parts of P(u, 0), 
defined as 

P • (u,O) = P(u,O)| + _ u) (2.6) 

with | the Heaviside step function; (2.5a) can be written symbolically as 

P+ = ~ P _  (2.5b) 

A solution of type (2.4), which contains a constant current flowing towards 
the wall, is possible only if there is at least some absorption: fo(u[u ' )du 
< 1 for at least some u'. The case of a totally absorbing wall, treated in Ref. 
2, is obtained by putting o, and hence ~ ,  equal to zero. 

Rather than trying to satisfy (2.6) exactly, we shall construct approxi- 
mate solutions 

N - I  

t 'N(u,x) = r + d.%+.(u,x)  (2.7) 
n = 0  

such that the quantity 

D2N=s PN_)(u,O)~2du (2.8) 

with P~  defined in analogy with (2.6), is minimized. The function p(u) is 
an as yet arbitrary positive weight function; we shall choose O(u)= 
u exp[ �89 m,Su2], as in Ref. 2, for reasons discussed there. The condition that 
D~ is minimal yields a set of inhomogeneous linear equations for dff, that 
are solved numerically. For the choices of a(u I u') treated in the next two 
sections, the coefficients in this system of equations can be evaluated using 
the formulas in the Appendix of Ref. 2. If the ff+n(u,0) with n = 0 ,  1, 
2 . . . .  possess the half-range completeness property discussed in Ref. 2, the 
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dff have unique limits for N ~  ~ ,  that do not depend on the choice for 
p(u). This property, though plausible, remains unproved. 

3. SELECTIVELY ABSORBING WALL WITH SPECULAR 
REFLECTION 

In this section we describe some results obtained with the method 
described in Section 2 for the wall scattering kernel 

o(u I u') = 8 ( u  + u ' ) O ( u ,  - lu'l) (3.1) 

i.e., particles hitting the wall with absolute velocities larger than the 
threshold velocity u t are absorbed, while slower particles are reflected 

specularly. Calculations were carried out for the values u, = � 8 9  1,~-, 

and 2 in units of the thermal velocity ( r a f t ) -  1/2. The calculations, as well as 
those reported in the following sections, were carried out on the CYBER 
175 of the RWTH Computing Center. Details of the calculational proce- 
dure are given elsewhere. (7) The calculations turned out to be much more 
time-consuming than the corresponding ones for u t = 0, and they were not 
carried beyond N = 70. 

A three-dimensional picture of the P V~ that minimizes D20 [see 
(2.7) and (2.8)] for u t = ~ ( m f l ) - 1 / 2  is given in Fig. 1. The kinetic boundary 
layer differs noticeably from that in Ref. 2 for a totally absorbing wall. In 
particular, the density seems to go through a minimum and then increases 
again towards the wall. Closer inspection of the figure shows that the effect 
occurs only in the low-velocity part of the distribution. The effect is readily 
understood. Particles too slow to be absorbed are reflected with a low 
velocity. They will tarry near the wall for some time and, if they have their 
first turning point close to the wall, their chances of amassing enough 
kinetic energy to be absorbed at their next encounter with the wall is again 
rather poor. A similar accumulation of unabsorbable particles near a wall 
was seen by Hess (s) in a system of anisotropic molecules near a wall that 
preferentially absorbs molecules with certain orientations. In Fig. 2 we 
show the density profiles 

n7~ = ;P7~  x) du (3.2) 

relative to their asymptotes 

70 (2~),/2d7O (3.3) nas ( x )  = x / l  + 

for the different values of u t and, for comparison, for u t = 0. A minimum in 
the density occurs for u t of the order of the thermal velocity or higher. The 
interpretation of the density increase towards the wall as an accumulation 
of slow particles is confirmed by the data for the mean kinetic energy per 
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2, 

I. 

O. 

0 1 2 "~ 

Fig. 2. The density profiles n7~ ef. Eq. (3.2), for absorption thresholds 0, �89 ,f~-2 ~ , 1, ~/2, 
and 2, in units of (m/3)- 1/2, and specular reflection. The curves have been shifted vertically in 
such a way that their asymptotes n7~ cf. Eq. (3.3), coincide with the dashed line in the 
figure. The lowest curve corresponds to u t = 0, the higher ones to successively higher values of 
u t. Lengths are in units of the velocity persistence length l. 

1.3 

1 .2  

1.1 

1.0 

o i 3 

Fig. 3. The approximation obtained with 70 boundary layer solutions for the mean kinetic 
energy per particle, in units of �89 - I ,  as a function of x/1 for specularly reflecting walls with 
absorption thresholds as in Fig. 2. The highest curve corresponds to u t = 0; u, increases 
successively as the position of the curves at the high-x side becomes lower. 
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particle (in units of • f l -  l), 2 

mfl(uZ) VO(x) = mB f e7o(u,x)u2 du[ nTO(x) j 1 (3.4) 

exhibited in Fig. 3. We note in passing that the occurrence of a stationary 
current flowing against a density gradient near the wall is a clear illustra- 
tion of the breakdown of the hydrodynamic equation (here: the diffusion 
equation) inside the kinetic boundary layer. 

The convergence of the results with increasing N is rather slow, but 
fast enough to secure the validity of the qualitative conclusions just 
described; a fuller discussion is given elsewhere. (7) Our values for the 
extrapolation length xM for the model are given in the next section. 

4, SELECTIVELY ABSORBING WALL WITH DIFFUSE 
REFLECTION; EFFECTIVE REACTION RATES 

In this section we consider the wall scattering kernel 

o(u ] u ' ) =  m/3u exp(- �89 [u'l) (4.1) 

which implies that particles hitting the wall with velocities larger than u t are 
absorbed, while slower particles are reemitted with a velocity distribution 
corresponding to a Maxwellian at the solvent temperature. The specific 
feature of this kernel is that the operator 6~ defined by (2.5) is a multiple of 
the projection operator on the function +o(U, 0)| This implies that the 
boundary condition can be fulfilled by a function Pfu, l (u, x) of the form 

Pt,A(u, x) = Pt0l(u, x) + Ado+0(u, x) (4.2) 

with Ptol(U,X) the solution for the case of a completely absorbing wall, 
Substitution in (2.5) using (4.1) shows that this fulfills the boundary 
condition, provided one has 

ad o = (mB )~/2 f_-~'lul[ t"to](u,O) + Ad0~0(u,0)l du (4.3) 

from which Ad o is easily determined when PI01 (u, 0) is known. 
The form (4.2) for our solution implies that the boundary layer for the 

wall studied in this section is obtained from the boundary layer for a fully 
absorbing wall by adding a Maxwellian distribution with constant density 
in space. Of course this holds only for the exact solution, but we found that 

N for the approximate solutions P[u,l determined as described in Section 2, it 
remains true to at least the first six significant digits. Calculations were 

1 1 carried out for (mB)l/2ut = 5, r~--�89 and 4, and for N up to 140. The 
interesting new information contained in our results is the value for Ad o or, 
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Table I, The MIIne Extrapolation Length in Units of the Velocity Persistence 
Length for Various Values of the Threshold Velocity . f f  

u t N=35  N = 5 0  N = 7 0  N =  140 Extrapolated TST SCTST 

67 

0 1.419 1 .425 1 .430 1.438 !.46 2.507 1.253 

i ( s 1.488 1.489 1.489 ) 2.840 

d 1.606 1 .610  1.613 1.618 1.63 
1.464 

s 1 .559 1 .560  1.562 

d 1.866 1.869 1.871 1.874 1.88 
1.740 

s 1.848 1 .884 1.927 ) 
1 4.133 

d 2 .579 2 .581 2 .582  2.584 2.59 
2.477 

s 3 .593 3 .830  4.009 ) 

,~- 6.814 
d 4 .937 4 .938  4 .938  4.939 4.94 

4.684 

s 11.20 11 .63  12.46 ) 
2 18.52 16.10 

d 16.14 16 .14  16 .14  16.14 16.14 

4 d 7468 7468 7468 7468 7468 7472 7468 

~' The first column gives u t in units of the thermal velocity, both for specular (s) 
and for diffuse (d) reflection of subthreshold particles. Columns 2-5 give the 
approximate values calculated using N boundary layer solutions, column 6 the 
extrapolated value for N = c~ (only for diffuse scattering), and columns 7 and 
8 the approximations calculated from "transition state theory," both in a naive 
(TST) and in a self-c0nsistent (SCTST) version. The inverse of x M is propor- 
tional to the effective absorption rate at the wall. 

equivalent ly ,  the pos i t ion  of the a sympto te  to the densi ty  profile,  

nas(X) = x / l  + (2~r)l/Zd 0 = ( x  + x M ) / l  (4.4) 

where  x M is the Mi lne  ex t rapo la t ion  length def ined  in Sect ion 1. The  
app rox ima t ions  x u to this quan t i ty  in units of the veloci ty  pers is tence 
length l = ( y 2 m f l ) - i / 2  are given in Tab le  I for  var ious  values of N and  of 
u t, both  for  the present  mode l  and  that  of Sect ion 3. The  length l is the 
d i s tance  a par t ic le  with veloci ty  ( m f l )  -1 /2  travels dur ing  the veloci ty  
equi l ib ra t ion  t ime y - 1 .  The  table  also conta ins  ex t rapo la t ed  values for x M 
found  for diffusely scat ter ing walls using the m e t h o d  descr ibed  in Ref. 2, 
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Section 4. The results for different extrapolation intervals agree to the 
accuracy given in the table. For specularly reflecting walls reliable extrapo- 
lation was not possible. 

The quantity x g may also be related to an effective reaction r a t e  kef f 
defined as the ratio between the current flowing towards the wall and the 
density nas(0 ) obtained by extrapolating the asymptotic density towards the 
wall. Since in (2.4) only the term q/o(u ,x)  contributes to the current (as 
shown in Ref. 2), this quantity is calculated easily; using (2.2b) we obtain 

kerf = ( m f iTxM ) -  ' = ( r o t )  - ' / 2 l / x  M (4.5) 

A rough approximation to kef f would be obtained by replacing the velocity 
distribution at the wall by a Maxwellian and then determining the current 
carried by all particles with u < - u t. This "naive transition state theory" 
yields 

kerf~-(mfl/a~r)l/2(-U'uexp[.,-oo - gmflu' 21 du  

= (2~rrnfl) - '/2exp [ - �89 m f i u  2 ] (4.6) 

the approximation does not differentiate between diffuse and specular 
scattering. The value of x g corresponding to (4.6) according to (4.5) is 
listed in Table I. Except for high u t it gives much too low a value for keff. 
An obvious refinement is to approximate the velocity distribution at the 
wall by 

/; (u, O) = ~b6(u, O) + 3o4o(U, O) (4.7a) 

and to determine do by the requirement 
- - U  A - b O O  t f f - ( m f l ' ) , )  - I  (4.7b) 

We propose to call this approximation "self-consistent transition state 
theory"5; the corresponding approximation to x M is also shown in Table I. 
It yields a slight underestimate for x M for diffusely reflecting walls, but the 
approximation is quite good, except for very low thresholds. Since the 
approximation (4.7) consists of a complete neglect of the presence of the 
kinetic boundary layer, we may conclude that the presence of this bound- 
ary layer has a rather small effect on the effective reaction rate for diffusely 
scattering walls, except at very low thresholds. 

For specularly scattering walls the effect is also quite small at sub- 
thermal threshold velocities. For higher thresholds our numbers might be 

s Note that this approximation is equal to P a(u, 0) for a diffusely scattering wall, as is clear 
from a comparison with (4.3). 
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interpreted as indications of larger effects, but because of poor convergence 
of our results with N this evidence is not really conclusive. The only feature 
that seems reasonably assured is that the effective reaction rates for 
specular reflection are always larger than the corresponding ones for diffuse 
reflection. This seems reasonable; after a diffuse reflection a reflected 
particle obtains on the average a higher positive velocity, and hence it takes 
longer, on the average, to reach the wall again. 

5. C O N C L U D I N G  REMARKS 

The transition state theory of chemical reactions has two main de- 
fects(9) : (i) it neglects effects caused by deviations from local equilibrium; 
(ii) it neglects the possibility of a particle crossing the "top of the barrier," 
recrossing it again, and falling back without having reacted. The model 
treated in this paper shares the shortcoming mentioned under (ii): a particle 
reaching the wall with sufficient energy is always absorbed. Effects of type 
(i), on the other hand, are expected to be prominent. They are not even 
amenable to perturbative treatment; the natural expansion parameter is the 
ratio between the velocity persistence length (or the mean free path) and 
the distance over which the potential varies appreciably. The results of such 
a perturbative treatment can be extended to higher values of the expansion 
parameter by Pad&approximant techniques, as was done recently by Skin- 
ner and Wolynes. (9) In our case the variation of the potential is compressed 
to a single point and a nonperturbative treatment is clearly called for. 

The method of expansion in boundary layer solutions, which forms the 
basis of our treatment, was successful in various boundary layer problems 
in linear transport theories. (m) These successes were obtained by sophisti- 
cated analytical methods, based on half-range completeness theorems. 

Such a theorem is not available for our case, but the success of the 
numerical treatment gives some support to its validity there. 6 Of course, 
even if the set is complete, it need not be very convenient for expansion 
purposes. In fact it is rather awkward, as may become clear from Fig. 4, 
which shows ~b+n(u,0 ) for n = 35, 70, and 140, and for small values of ]u I. 
From the properties of the Hermite polynomials (~2) it is easy to show that 
the first zero lies at Xl. n ~ 2 . 3 3 8 . . .  n - ~/6 and the "local wavelength" near 
x = 0 also decreases as n - ~/6. Thus it is intuitively clear, that an expansion 
in tp, (u, 0) will converge much more slowly than, say, a Fourier series. This 
is especially true for the boundary condition of Section 3. The latter may be 

6 A similar approach was used in a recent paper by Pomraning and Larsen(11) ; like ours, their 
numerical solution procedure was found to be highly sensitive to round-off errors. 



70 Burschka and Titulaer 

I 

:1 o i 
Fig. 4. The values at the wall of the boundary layer solutions ~+~(u, x) for n = 35, 70, and 
140 (n increasing as the position of the curves at low u decreases), for a range of u values, in 
units of (rot)-1/2. 

written as 

P+ (u,0) = e ( -  u,0)O(u, - u) (5.1) 

which suggests a discontinuity at + u t. On a more technical level, it is clear 
from Fig. 4 that in particular the integrals 

fo~ 0)+ +n (u, 0) u exp( �89 mflu 2) du (5.2) 

and 

f0u'++, ( - u, 0)+ +,~(u, 0) u exP(�89 2) du (5.3) 

that enter into the system of equations resulting from minimizing (2.9) with 
derived from (3.1), will decrease quite slowly with n, or with n and m; 

this leads to slow convergence of the d N, and especially of the d N, with 
increasing N. 

In spite of these difficulties, we were able to obtain a good qualitative 
picture of the phenomena that occur in the kinetic boundary layer, even for 
the case of specularly reflecting walls. 
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